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ABSTRACT

Companison of nonlinear frequencics by two different approaches of large amplitude free
vibration analysis of unstiffened and stiffened plates has been done. The nonlinear frequencies
have been determined on the basis of the fimte clement method. A stiffened plate element has
been developed for this purpose. The comparison has been done by emploving the same element
i both the approaches. The deviation of the results from theoretical and analvtical solutions has
been discussed.
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1. INTRODUCTION

Nonlinear vibration problem concerning plates of various geometry and shape in different forms
has received considerable attention in recent vears, Most of the approaches are by analyvtical
means [1-2] The large amphitude free vibration problem of plates by finite element method is
complex due to the treatment of time function. The time function has not vet been catered for.
satisfactorily by any investigator dealing with the finite element method due to its complex
malure.

The first attempt to apply the finite element method to this problem is duc to Mei [3]. In his
formulation he has assumed that the inplane forees are constant within each element, Based on
the idea of Mer [3]. Rae ot al [4] have proposed a simple finite element formulation where they
have used lmearizing technique for the nonlinear strain-displacement relations However the
foregoing formulations are erroneous due to the following reasons.

The lincarizing  functions  used in the nonlinear strain-displacement relations are kept
constant n the variational process involyed in the formulation of the cquations of motion, which
makes the formulation incorrect. Dumir and Bhaskar [5] have explained this aspect.
Furthermore. the motion may not be harmonie at any instant of time and the nonlinear stiffness
matrix is evaluated on the basis of the maximum value of the amplitude that actually varies from
Zero to s maximum valuce,

The first error provides less hardening effect whereas the second one provides more
hardening effect, which ultimately compensates to some extent and gives results nearer
to the analytical solutions.
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Prathap and Varadan [6-7] have studied the large amplitude vibration of beams and plates.
Their treatment 1s based on the satisfaction of equations at the instant of maximum displacement
and for comparison purpose thev have reinterpreted the approach of Woinowsky-Kricger [ 18],
The displacement parameters used for the evaluation of nonlinear stiffness matrix are taken at
the instant of maximum amplitude.

Recently. Gray et al [12] have presented a method based on the finite element method where
the ambiguitics of the earlier methods are overcome. The major difficulties are associated with
the time function and this is taken care of by a proper linearization of the assumed limit evele
tme function. This has been discussed latter in this paper. The formulation of the nonlinear
stitfness matrix is also been treated properly.

In the present paper both the approaches of Sharma and Varadan [11] and Grav et al [12]
have been followed. Analysis has been carried out with a newly developed stiffened plate
clement and the results have been compared with theoretical and analvtical solutions.

2. PROPOSED METHOD

The goverming nonlinear free vibration equation can be written as

[k, o} + [M]{&} = {o) (1)

wher [ K, ] 15 the secant stiffness matrix which i1s dependent on the amplitude of the vibration,

[ M ] is the overall mass matrices and |8 }is the displacement parameter.
Eq. (1) can be expressed as

(s} + ([ legn ]l )e) - 1) @

where [K 3 ] 15 the linear stiffncss matrix, [ N, ] and [ N, ] arc the nonlinear stiffness
malrices. [ N ] 15 linearly and [Nr-, ] is quadratically dependent upon & |

Eq.(1} consists of a set of nonlinear differential homogeneous equations. These can be solved
by different approaches.

A stiffened plate ¢lement has been developed for this purpose. The basic flat plate clement is
a combination of the DKT (Discrete Kirchhoff Triangle) plate bending element (Stricklin et al
[13]) and Allman’s planc stress element [14].

Starting point in the formulation of the bending and membrane element is a 6- noded triangle
having 12 degrees of frecdom each. By using constraint conditions, the degrees of freedom are
finally reduced to w, v, w, 0 0 and 8, atthree corner points of the element. The derivation

of the stiffness and mass matrices of the plate element is not given here as it has been already
discussed in detail by Samanta and Mukhopadhvay [15-14].

The formulation of the stiffener has been made in such a way that the stiffener can be placed
anywhere within the plate element. The common shape function is used for both the stiffener
and the plate clements. This not only facilitates expressing the stiffness matrix of the stiffener in
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terms of the parameters of the plate element but also maintains the compatibility of the stiffencr
with the plate. The fact that the stiffener can be placed anvwhere within the plate element. thus
obwviating the restriction of mesh gradings has enabled the treatment of stiffencd plate problems
in a more ¢legant manner. The stiffener clement formulation has been discussed in details by
Samanta and Mukhopadhyvay [15].

The analysis of the large amplitude vibration problem consists of two components. The
major part involves with the nonlinear finite element formulation of the structure and the sceond
part is the solution procedure. As the stiffncss matrix of the plate and the stiffener element arc
derived, the nonlincar stiffness matrix has been evaluated i the usual manner [17]. The secant
stiffness mateix | & | 15 dependent on the structural deformation which is a function of time.
The methods differ  in the treatment of time function. Onee the amplitude has been determined
on  the basis of ome function, the sccant siffness matrnix can be determined easily. The
approaches followed in the present paper have been discussed below.

20 Approacth |

This approach is similar to the approach of Sharma and Varadan [11] and can be termed as
Muethod | (M1}, According to this approach. the frequency has been evaluated at the instant of
maximum amphide (pomnt of reversal of motion) when

{81..=1 18}={0} and {3}=-02{5} (3)

where |6 | {6 } and {5 }m'&: displacement. velocity and acceleration vectors. and @ 15 the
nembingar fregquency

In this approach the solution is first obtained by solving the linear equations ignoring the
[.-"l-";] and [s"-.-'_.] terms of Eqg. (2). The lincar mode shapes are the starting vector for the non-
Imear analvsis. By the direct  iteranon procedure the non-hinear charactenstic frequencies and
mode shapes have been caleulated and the ratio of the non-lincar fundamental frequency o the
linear fundamental frequency 1s evaluated. For a particular amplitude. solutions obtained from
the previous amplitude have been taken as the starting vectors.

22 Appwosaich 2
In this approach the tme function has been taken care of by a proper Imecanzation of the
assumaed limat evele time function [12]. This approach has been termed as Method 2 (M2). Gray
ctal |12} have rreated the complex time part with a simple approximation and ultimately made it
a constant quantity, The nonlinear stiffness matrix is dependent on the structural deformation.
which is a function of time. They have climinated the time part by expanding the cosew 7 term
i tiz the non-dimensional time) and neglecting higher harmonics. With these approximations.
they have obtamed o result closer to that of Woinowskv-Krieger | 18]

Following the approach of Gray et al [12]. the svstem of equations have been reduced to a
svstem contaiming the transverse displacement only as explained below,

Separating into membrane and flexural parts. Eq. (2) vields
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i_[[:::l [R-_r'».-] :[K:_{r] [Kifm] }Jl.ﬁ" \> = {0} (4)

(K] |7 K] (K]

Togd

where {5}, } and {Em } arg flexure and membrane displacements respectively. The subscripts
M and mm have been used to represent the matrices corresponding to flexure and membrane
parts where as fm and mif are for coupling terms

By neglecting the mplane mass for lower frequencies. Eq. (4) can be partitioned and written
as Lwo separate cquations. Solving these partitioned equations for {5 ) leads to the following

reduced system of equations in terms of the transverse displacements !5

[M.-.' Hh } ! {{[K,,{, ] + [Rru.‘ ]+ [K:n “ '{[K'wr] i [K':_n'w] * [K‘-.-m ])
([£uel s TR T (] T8 8] M) = 1)

where the relanonship

(8.} = ~([ Ko ]+ [Kia )+ [Kau I ([0 ]+ [Kip ]+ [y D5, )
(6)
has been used in deriving the equation,
The matrix equation as written, is in the configuration space and as such, does not lend itself
o standard eigen selution algorithm. Thus, the approach to be adopted transforms the problem
from the configuration space to a state space. which results in a more standard form of the
cigenvalue problem. The solution of the homogeneous problem is sought in the form of

{ﬁ;} =& {p}e'r (7)
where {d;r } i the complex cigenvector, 02 = [Ct + .fm} 1s the complex eigenvalue, and ¢ 152

nonzere (scalar) constant displacement amplitude and 7 is the nondimensional time,
Substituting the Eqg. (7) nto Eq. (5) gives

(v, |+ [k ) {ele™ = {0} (%)
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[Ku ]= {{[Kus'} * [Klf ] + [Ke.rr ]}_([K“.ﬁn] + [Knm] + [K:;m ]]
([ &opor] * [Kio 1+ 1K ]} ([ Ky [+ [ Ko ] [y 1))

By expressing ™" as a complex quantity in Euler form and requiring both cocfficients of
sinw! and coswm/ to vanish. Eq.(8) can be wnitten as two equations ;

¢ e*(Qm ]+ K ]) o cosar = (0] (9)
ize™(Qfp ]+ [x]){o)sinor = {0} (10)

Siwce ¢ 18 nonzero and the solution sought 1s for all times greater than zero. both Eqs (9)
and (10} represent the same gigenvalue problem. As is generally the case with most nonlinear
problems. numerous methodologies are available 1o obtain lincanzed solutions. A significant
focus of this study has been centered around lincanizing  the resulting nonlinear cigenvalue
prablem of Eq. (9) for syvachronous motions, This can be accomplished by lineanzing Eq. (3)
and emploving an iterative solution procedure,

Now neglecting higher harmonics, the assumed time function for displacements can be
approxunated 1o a quantity that is independent of time, The homogencous Eq. (4) can be solved
m an iterative manner by the technique proposed by Gray et al [12] which consists of using a
lincarised updated mode with a nonlinear time function approximation (LUM/NTF).

3. NUMERICAL EXAMPLES

Numerical results for large amplitude free vibration analysis have been presented in this section.
For simply supported boundary condition. of all the examples presented. the in-plane boundary
conditions are 1t = v =0 at all four edges.

20 Unstiflencd sguare plate

A square plate has been analysed by the proposed method. Both types of boundary conditions,
simply supported and clamped at all edges have been used for this purpose. The results obtained
are presented along with the casting solutions. A quarter plate has been analvsed by = 8 mesh
division for both tvpes of boundary conditions. The convergence of the nonlinear frequency
rato | ) for the fundamental mode of simply supported and ¢lamped boundary conditions

for amplitude ratio, ¢/ = | has been presented in Tables | and 2 respectively,
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Table . Convergence of frequency ratio {w |, /o) for the fundamental mode of the

simply supported square plate for amplitude ratio ¢/f = 1.0

‘ MAAMOn o2 mgr SRS ARID

in quarter plate .
Method | F.53259 152867 153090 53128
Mcthed 2 141934 141500 141393 141624

Table 2. Convergence of frequency ratio (o , /o) for the fundamental mode of the

clamped square plate for amplitude ratio ¢/f = 1.0

Mesh division

1

: S 4 x4 8x8& 10w 10 |

|_in gquarter plate |
T Method | 1 24988 122456 121876  1.21801
Method 2 119320 117317 116823 116761

The nonlinear frequenes ratio (o, fo ) for the fundamental mode for the case of simply

supported boundary conditions by the present methods has been shown in Table 3 along with
the analytical solution (based on a perturbation method ) of Chu and Harrman [1].

Table 3 Nonlinear frequency ratio (o, /@) for fundamental mode of

simply supported square plate

clh (2 0.4 0.6 08 1.0
Chu and Harrmann |1 |01947 107561 116252 ] 27330 | 40232 i
Methed | LOzelg 110123 1.2164% 136248 153000
Y Deviation 0.658 2382 4642 6. 997 Gol6a4y
Method 2 101969 107672 116392 128097 141593
\i?a’u: Deviation 0022 0103 0,293 (0.593 (1971

Percentage deviation of  the frequencies of the present methods from the analvtical solution
has also been given in the same table. It can be seen from Table 3 that the results obtaned by
the present approach of Method 2 have excellent agreement with the analytical solution of Chu
and Herrmann [1]. On the other hand the results obtained by Method | of present approach are
higher compared to the results of Method 2 and analytical solutions. It is expected. because in
the case of Method 1. the displacement at the instant of its maximum amphitude has been used
for the cvaluation of nonlinear stiffncss parameters that introduces an overhardening effcer.

Table 4 shows the nonlinear frequency parameter (o /i ) of fundamental mode for

clamped square plate. This problem has been solved analvticallv by Yamaki [2] based on
Galerkin method. Here also it is found that the present approach of Method 2 agrees excellently



COMPARISON OF TWO APPROACHES OF FINITE ELEMENT METHOLDS FOR THE LARGE AMPLITUDE .33

with analvtical solution of Yamaki [2] rather than present approach of Method . Method |
solutions are marginally higher than the analyvtical solutions. the explanation are given earlier.

Table 4. MNonlinear frequency ratio {u) ! ,.-"m} tor fundamental mode of
clamped square plate

:‘J.-"F’.I N2 (.4 0.& 0.8 [.0
Yamaki | 2] [.ODR4T 102023 ] 06609 | 11358 1. 167440
Method 1 L.O09T75 103841 108432 114525 1213876
Yo Deviation (.00 {892 7160 2844 4 400
Method 2 L.OO732 102895 106393 111088 1.16823
% Deviation 0001 0027 0203 0.243 0071

Tebles 5 and 6 present the frequency ratio { w, [ J for second mode (=2, =1, where
m = number of halt sine waves along the length of the plate. and # = number of half sine
waves along the width of the plate) of a simply supported and clamped square plate
respeetively. Comparison has been made with Mei and Rogers | 19]. A good agrecment has been
found between the present frequencies of Method 2 and with Mei and Rogers [19), whereas the
carher trend has been followed for the case of Method 1

Table 5. MNonlinear frequency ratio {-;n ,,,-"m} for second mode (m=2, n=1)
of simply supported square plate

clh 0.2 04 Lo 0.8 1.0
Mer and Rogers [19] 10241 104930 1 [19sd | 3307 4822
Method | [.03263 1.12595 1.26925 1 45052 65504
Yo Deviation (.381 1.477 3.128 7.594 7.190
Mcthod 2 |.02454  1.09552 L20634 134910 151624
"o Deviation 0043 (1.23] ().663 [.3R3 2.297

3.2 Simply supported crosy stiffened square plate

A simply supported square plate stiffened along both the dircetions bv central cocentric
suffeners as shown in Figure. 1 has been analysed by using § « & mesh division in quarter plate.
Nonlincar frequency ratios | o, /o ) obtained in the present analysis are compared with those of
Sheikh  and Mukhopadhyay [20] and have been presented in Table 7. Sheikh and
Mukhopadhvay have solved the problem by using finite strip method using the same approach
of Gray et al [l2]. The present results of Method 2 are well agreed with Sheikh and
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Mukhopadhyay. The percentage deviation of Method 2 1s within 1.33
percentage deviation of method 1 of the present with the solutions of reterence [20] is more than
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Figure I Simply supporied cross stiffined square plate

4

%, whereas the

Table & MNonbincar frequency ratio [L'] . fw) for second mode (m=2, n=|)

of clamped square plate

efh 0.2 (14 06 0.8 10
Mot and Rogers |14 | 0132 1.05%3 1.1239 1.2054 1.30H 5
Methad | L.oranT [.07393 1. 15905 | 29801 |.39308
%4 Devianon {1381 | 477 3,128 7504 T80
Miethod 2 L1.O1433 1 .0&a0] [ 12163 | 20700 130803
“n Devianon {L.O8G 216 0.202 (1.0497 0502

Table 7, Nonlinear frequency ratio (m ol m} of a cross stiffencd square plate

& h 02 (.4 (6 & | .0
Sheikh and Mukhopadhyay [20] 0 1.OD48 L0176 LO371 16l 1.0894
Method | [O093  1.0230 10536 L0912 1.1337
% Deviation 0.448% |.022 1784 2798 4047
Method 2 10090 1.0231 LOd40 107110 11039
4 Deviation D418 0341 i) 663 0904 L3112
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4. CONCLUSIONS

Companison of the nonlinear frequencies of unstiffened and stiffened plates has been done
between the two approaches. Method 1 (M) and Method 2 (M2) using a newly developed
stiffencd plate clement. From the tables it has been observed that the results obtained from
Approach 2 or Method 2 are closer to the analytical or theoretical solutions. It has also been
observed that the results obtained using Method 1 are higher, compared to the analvtical
solutions. In Method | the evaluation of the nonlinear stiffness matrix has been taken at the
istant of maximoem amplitude. which 1s incorrect. In this aspect the approach of Method 2 15
better than the approach of Mathod 1. However rescarch is still going on i this ficld. It can be
cxpected. that the large amplitude problem of unstiffened  and stiffened plates will draw the
attention of more number of rescarchers m future as many things can be done in this ficld by
applving the finite clement method.

The newly developed stiffened  plate element is very effective for the nonlinear analvsis of
siitfened plates. In future. the present work can be extended to the nonlinear dyvnanmue analvsis
of stiffencd shells which has not vet been reported anywhere to the author’s knowledge.
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